
 1

Using OWL Contexts and OQE

to Improve Web Document

Search Precision and Recall

David George
1
, Zimin Wu

2

1, 2
 School of Computing, Engineering

and Physical Sciences, University of Central

Lancashire, Preston, Lancashire, UK
1
 email: dgeorge@uclan.ac.uk

Abstract

Ontologies describe domains and integrate

information semantically. This paper examines

semantic search, using ontology modules

(contexts) and an independent corpus of Web

documents, to see how ontology-based query

expansion (OQE) might improve information

retrieval precision and recall (P&R) compared to

traditional keyword-only query; by giving added

weight to documents that contain terms relevant

to a query context ontology and also by returning

relevant Web documents containing none of the

original search keywords.

To assess search effectiveness, a semantic

search tool (SemSeT) has been developed to

conduct OQE experiments; by matching OWL

file concepts with document text, without

resorting to structured semantic query languages

or reasoning to automatically refine queries. A

vector space model has been used to calculate

document relevance scores and the results show

that, compared to basic keyword query, OQE can

markedly improve P&R.

Keywords: Information Retrieval; Ontology

Context; Ontology-based Query Expansion; Precision

and Recall, Semantic Search.

1. Introduction

Traditional Web search and information

retrieval (IR) rely on matching keywords/phrases

with indexed documents to generate a ranked list

of potentially relevant documents, optimised in

terms of search effectiveness - typically precision

and recall (P&R) [30]. However, traditional IR

is unlikely to return documents having

semantically related terms, if they contain none

of the query terms. Therefore, rather than relying

solely on such IR approaches, could Semantic

Web [3] ontologies help search tools retrieve

relevant documents more effectively by giving

greater weight to documents having wider

contextual relevance to queries? Whilst there are

ontology based search examples, a review of

Semantic Web near-term prospects [2] and

examination of use cases [34], added to existing

commercial search engine approaches, does not

suggest imminent or significant semantic search

breakthrough; and yet ontology expressivity

seems to offer much for query expansion.

The role of ontology [6, 11-13] in the

Semantic Web is to formally describe a domain

of interest, facilitate reusability [19], and

semantically link and integrate information by

overcoming structural and semantic

heterogeneity. A Semantic Web lift-off requires

a critical mass of RDF/OWL [32, 33].

Ontologies have featured in various academic

search initiatives:

i. crawler-based locators of RDF and

ontology resources, e.g. Swoogle [7] and

Sindice [20]; search support in specialist

knowledge domains, e.g. bioinformatics

and the Gene Ontology [1, 27];

ii. international organisation support, e.g.

World Bank and Organisation for

Economic Co-operation and

Development (OECD) [15] and in legal

document search [4], where ontology

query uses technical terms to find related

information, terms and documents;

iii. other research projects involving

ontology-based query expansion [5] to

exploit ontological relations [8, 16] and

semantic network-based sense

definitions [18], where ordinary keyword

terms drive ontology traversal, using

reasoning-based semantic query

languages for query expansion concepts.

Related lexical work has included [31].

Commercial semantic search has included

natural language processing search companies

Hakia [14] and Powerset [21].

This research has similarities with research in

(iii), except that it will measure the benefits of

ontology-based query expansion (OQE) without

resorting to semantic reasoning-based structured

query languages. A semantic search tool

(SemSeT) has been developed to show that OQE

can enhance P&R compared to purely keyword-

driven search. The research will show how small

ontology modules (contexts) can support users

 2

and OQE and can return relevant Web

documents containing none of the user’s original

search terms, e.g. if query terms Europe and

transport company were matched only in an

ontology, SemSeT could search for semantically

related concepts via the class hierarchy from

TransportCompany to find North_West_Trains

and from Europe via classes and relations to find

Manchester and England - as in Fig. 1.

Fig. 1. SemSeT OQE finds a related document.

1.1. Research Objectives and Tasks

The primary objective was to develop

SemSeT, using a classic document relevance

algorithm and generating P&R measures, to

compare OQE search effectiveness against

keyword-only search. A query tool for both

keyword and OQE was necessary because

ontologies would be incorporated within a query

process and meaningful document relevance

comparisons with a search engine would be

difficult given the effect of page indexing and

relevance algorithms, e.g., the PageRank link

analysis [10]. A further objective was to develop

small self-standing ontology modules for use in

both OQE and the user’s selection of a query

relevant ontology context and terms. The tool

also required ontology traversal algorithms and

concept weightings to reflect semantic distance

between base query terms and OQE terms.

1.2. IR and Document Relevance Ranking

IR techniques present results ranked by order

of relevance using various algorithms, e.g., the

Vector Space Model (VSM) [24], an algebraic

model for representing a document’s collection

of terms (vector) as a scalar value to reflect

similarity to a query vector, and Probabilistic

Models [26], where similarities are calculated by

probabilistic inference that term distribution will

be different in relevant and non-relevant

documents. For this initial research, comparing

the use of keywords against OQE, the VSM

relevance measure was selected.

The VSM has been extended by a classic tf-

idf measure [25] for term-weighting, where a

term’s importance is increased by its frequency

in the document but is reduced by the frequency

of the term in the document corpus. To rank a

document’s relevance, the tf-idf measure

calculates the sum of a document’s term weights:

where tf represents the frequency F of any term t

in document d (i.e., Ftd) and idf is the inverse

document frequency calculated by the log of the

number of documents D in a corpus, divided by

the number of documents n containing term t. A

term weight vector Wtd, e.g. for term ti is then:

i

i

i t

dt

Dddt

td
n

D
FW ln

,

To minimise exaggerated weightings when

documents contain excessively repeated terms,

the frequency Ftd for each term can be

normalised by dividing it by the highest term

frequency maxFtd found in the document:

ii

i

tDddt td

dt

td
n

D

F

F
W ln

max,

The document weight vector (Wd) is then the

sum of all matched term weights:

dtt

dtdtd

ni

ni
WWW

,,,

],,,[

The tf-idf result is a weighted statistical

measure of a term’s importance to a document

and can be used in P&R measures to determine

search effectiveness.

1.3. Search Effectiveness

The IR community has traditionally

evaluated search effectiveness using the set-

based P&R measures [30]:

||

||

retrieveddocuments

retrieveddocumentsdocumentsrelevant
P

||

||

documentsrelevant

retrieveddocumentsdocumentsrelevant
R

P represents the number of relevant documents in

a returned set and R is the number of relevant

documents returned from a relevant set.

 3

1.4. Modularisation of Ontology Concepts

Small, self-standing ontologies can be

developed by specifying concepts in an equally

modular way, e.g. by adopting Rector’s best

practice approach [22]. Rector advocates that

self-standing primitives, roles and relations are

combined in asserted conditions to form more

complex defined classes, to avoid the often

hidden, inexplicit meaning in a concept’s name.

Given the use of search keywords, primitive

(stand-alone/atomic) classes would seem

consistent with the notion of such query terms

and with OQE and document text matching.

1.5. Organisation of the paper

The paper is organised as follows: section 2

discusses the SemSeT process and methods,

search topic ontology contexts, and queries for

P&R comparisons; section 3 provides pseudo

code for algorithms considered in section 2, i.e.

ontology traversal for OQE; section 4 presents

OQE results and discusses their significance;

section 5 presents conclusions.

2. Experiment Design and Development

This section considers the design and

development of SemSeT for IR experiments

made on the independent TREC WT2g [29] ¼

million Web document corpus; which has known

relevance outcomes. SemSeT uses various

ontology traversal algorithms to identify query

term matching/related OQE terms and calculates

P&R measures from document relevance scores

generated by a modified tf-idf algorithm. The

OWL ontology representation language [32] was

used to specify ontology contexts.

2.1. The SemSeT Interface

SemSeT is a prototype keyword and

ontology-based search tool developed with the

Jena Ontology API [17]. It offers a controlled

environment for testing OWL query algorithms

and ranking documents for P&R comparisons.

The interface (Fig. 2.) has three components:

 query setup in panel [i];

 query mode, query term selection and

VSM tf-idf scoring feedback in [ii];

 ranked document results output in [iii].

Fig. 2. SemSeT’s interface.

Query setup [i] requires a search mode, i.e.

keyword or ontology context, and up to 4 query

terms. Input boxes use an adaptive text process,

e.g. entering “t” reduces an ontology context list

to tourism and travel and “tr” selects travel. The

system then displays all travel classes in [ii] and

adaptive text is used to find OQE query terms. If

a matching ontology term is not found, the user’s

input is accepted. Given a base term set, e.g.

Hovercraft, Sea Travel, Ship and Transport, the

base terms plus sub, super or equivalent class

OQE set is generated in [ii], as shown in Fig. 3.

Fig. 3. Base query terms OQE set.

Various OQE options can be chosen, e.g. sub

and super class or sub and super and relation

class OQE. Document hits and rankings are

output in [ii] and [iii], as shown in Fig. 2 above.

2.2. Search Process and Methods

The SemSeT process, see Fig. 4, involves

keyword /context selection (A), keyword entry

(B), ontology traversal, term weighting and

query term set generation (C), document text

 4

analysis using pattern matching and a regular

expression (D), term weight allocation, VSM

tfidf document relevance algorithm for P&R (E).

The process only differs in query term set

generation stage (C), based on the search mode

required.

Fig. 4. Schematic of SemSeT process.

2.2.1. Term Pattern Matching and Validation

Query testing was conducted on a small

TREC document set so that text pattern matches

could be validated. The regular expression was

refined until reliable query term matches and

term counts were returned, e.g. ensuring ship,

ships, ship’s or –ship, are counted as one term.

2.2.2. Ontology Traversal for OQE

The OQE process creates a query term set for

each matched query term, by traversing the

ontology and adding sub, super, equivalent and

relation classes to the set, subject to the OQE

option required, i.e. the query term plus related

sub and super classes (S+S OQE); or S+S OQE

plus relation classes (S+S+R OQE), as in 2.2.3;

or all ontology classes (All OQE).

2.2.3. Class and Relationship Weighting

A weight can be applied to a query expansion

concept based on its semantic distance from a

query term [5, 8, 9, 23, 28].

As the weighting issue was unclear during

early experimentation, it was decided to initially

test SemSeT’s ranking algorithm using weights

similar to [8]. Fig. 5 shows how weight Ow

might reflect an ontology concept’s hierarchy

position for OQE, e.g. the concept Ship is a super

class of keyword matching class CargoShip and

could rank lower (0.7) than the direct match

CargoShip (1.0) but higher than CargoShip’s sub

class Tanker (0.3). The rationale was that a

super class could be weighted above a sub class

as a CargoShip is always a Ship but not

necessarily a Tanker.

Fig. 5. Semantic distance weights.

Other weightings can apply, e.g. relation

class CargoTerminal has no inheritance

relationship with CargoShip but does have an

asserted condition relation CargoShip unloadsAt

CargoTerminal; it was weighted at 0.5 and

individual Tanker_TorreyCanyon weighted 0.1.

The document weight W
+

d is then modified

by multiplying Ow with term weight vector Ftd :

Wtd = ((Ftd * Ow) /maxFtd) * ln(D / nt)

Different weightings were tested after the

main query experimentation and their P&R

impact is discussed in the results section.

2.3. Ontology Contexts Developed for OQE

The ontology context and OQE experiments

were based on the narrative given for selected

TREC query topics: TREC 401 “Foreign

minorities, Germany” (T401) and TREC 416

“Three Gorges Project” (T416); otherwise,

ontologies were specified independently, i.e.

without examining the TREC corpus.

2.3.1. T401 “Foreign minorities, Germany”

The query description for T401 was “What

language and cultural differences impede the

integration of foreign minorities in Germany?”

The Border Agency site and glossary of terms,

http://www.bia.homeoffice.gov.uk/, were used to

identify immigration concepts and an ontology

extract is shown in Fig. 6; it has a fairly shallow

class hierarchy supporting 41 query terms, which

limits S+S OQE potential.

 5

Fig. 6. T401 Immigration ontology.

2.3.2. T416 “Three Gorges Project”

The query description for T416 was “What is

the status of The Three Gorges Project?”

Primary information sources for a hydro-electric

ontology, see extract in Fig. 7, were the British

Dam Society http://www.britishdams.org/ and

Wikipedia’s Three Gorges Dam content

http://en.wikipedia.org/wiki/Three_Gorges_Dam.

Fig. 7. T416 Hydro-electric ontology.

As the ontology supports 58 query terms in

an equally shallow hierarchy, relation classes

were specified using asserted conditions, see Fig.

8, for S+S+R OQE query mode (2.2.2, 2.2.3).

Fig. 8. Hydro-electric class relations.

2.3.3. Query Matrix and P&R Comparisons

Both T401 and T416 keyword (K) to OQE

comparisons use a matrix of 10 query sets,

providing a spread of ontology classes to satisfy

the TREC topic query guidelines. The data from

50 queries allowed P&R graph comparisons to be

made by plotting cumulative document precision

at 10% recall intervals.

T401’s matrix used every ontology term (41),

as only limited S+S OQE was possible. Query

sets 1-6 compared K against All OQE and sets 7-

10 compared K against S+S OQE.

To examine T416’s S+S OQE limitations,

approximately 40 ontology terms were used in

two OQE approaches; by comparing K against

S+S OQE and then against S+S+R OQE.

3. Ontology Traversal Algorithms

Simplified algorithms are shown for class

hierarchy and relation class OQE. The appendix

has more complete Jena API-based versions.

3.1. OQE Algorithm – Class Hierarchy

Super class OQE adds direct super class line

classes, i.e. it excludes sub class branches.

for each ontology class c {
 if c subclass csub or c superclass c

sup
 OQE required {

 for each keyword {
 if c equals keyword {
 if c

sup
 required {do c

sup
Proc. }

 if csub required {do csubProc and do csubindividualProc. }
 do cProc. }
 if cProc {
 add c to OQE array.
 for c list equivalent classes c

eq
 {

 add c
eq

 to OQE array. } }

 6

 if do c
sup

Proc AND c has c
sup

{
 for c list c

sup
 {

 set Top class equal to next c
sup

.
 do c

sup
individualProc.

 add c
sup

 to OQE array. }
 if do c

sup
individualProc {

 for Top class list individuals {
 add individuals to OQE array. } }
 }
 if do csubProc AND c has csub {
 for c list csub { add csub to OQE array. } }
 if do csubindividualProc AND (c

sup
individualProc NOT executed) {

 for c list individuals { add individual to OQE array. } }
 } }
 else if (csub AND c

sup
 OQE) NOT required {

 add c to OQE array. } // Get All classes
}

if (csub AND c

sup
 OQE) NOT required {

 for each ontology class list individuals {
 add individual to OQE array. } } // Get All individuals

3.2. OQE Algorithm – Relation Classes

Relation classes are only generated for

classes found by the class hierarchy algorithm.

for each ontology class c {
 for each OQE array term where c equals OQE array term {
 for each c anonymous c

sup
 list object property values p

v
 {

 if p
v
 NOT (null OR Resource OR Restriction OR Class) {

 add p
v
 to PV array. } } } } // relation class?

for each PV array p
v
 {

 for every c where p
v
 equals c {

 if vector does not contain c { // relation class
 add c to vector and add c and weight to OQE array. } } }

4. Results and Discussion

In T401, 13,065 documents were queried to

find 37 relevant documents and in T416, 160,838

docs were queried to find 10 relevant documents.

The grouped P&R results were considered by

comparing P&R averages in two ways to account

for queries containing skewed data:

i. precision calculated on the average

number of relevant documents returned

at each 10% recall point;

ii. precision based on pooling individual

P&R curves, using a micro-evaluation

averaging (MEA) approach [30], i.e.

averaging precision percentages.

MEA-based graphs are shown where

P&R differs significantly from (i).

4.1. T401 “Foreign minorities, Germany”

The result of T401’s query group Q1-6

comparisons (K vs. All OQE) is shown in Fig. 9.

The All OQE mode resulted in significantly

higher average precision performance over K

across the 10-90% recall points. As the MEA-

based P&R profile was similar it is not shown.

Fig. 9. T401 P&R: K v. All OQE.

The query group Q7-10 (K vs. S+S OQE)

results show little difference between the K and

S+S OQE profiles, see Fig. 10, with K precision

marginally better than S+S OQE at 10% and

20% recall but lower at 30-80% recall.

Fig. 10. T401 P&R: K v. S+S OQE.

However, the group results were partly

distorted because, whilst query sets Q7, 8 and 9

showed better S+S OQE mode precision than K,

the results averaging was affected solely by

significantly higher document numbers returned

in query set Q10. Fig. 11 shows the MEA-based

P&R, with Q10 units issue minimised.

Fig. 11. T401 MEA P&R: K v. S+S OQE.

 7

The combined P&R graph for all 10 T401

query sets Q1-10, i.e. comparing K to OQE

modes (All and S+S OQE) is shown in Fig. 12.

Fig. 12. T401 P&R: K v. All/S+S OQE.

The graph shows OQE produced a markedly

better P&R curve than K between 10-90% recall.

The MEA-based graph showed a raised precision

(+10%) at 10-60% recall points for both K and

OQE but is not shown, as the precision curve

differentials were maintained at all recall points.

Recall was 100% for both K and OQE. On

average All and S+S OQE generated 28 query

terms, with 25 (91%) matched in document

search, suggesting the ontology was very

relevant. The lowest OQEs were for S+S OQE,

with an average 8 terms, all matched.

4.2. T416 Three Gorges Project

The T416 P&R graphs compare combined

results for all query groups Q1-10, for K vs. S+S

OQE and K vs. S+S+R OQE modes - see Fig. 13.

Fig. 13. T416 P&R: K v. S+S/S+S+R OQE.

The MEA-based graph shows similar relative

P&Rs but precision is higher (≈10%) for K and

S+S OQE and even better (≈20%) for S+S+R

OQE) between 10-60% recall - see Fig. 14.

Fig. 14. T416 MEA P&R: K v. S+S/ S+S+R.

In both graphs, S+S OQE showed better

precision than K mode at 10-50% recall but

S+S+R OQE eclipsed both. S+S OQE generated

on average 8 query terms, with 7 (93%) matched,

while S+S+R OQE generated 21 terms, with 19

matched (95%). On average 95% of the 10

relevant documents were found using K and S+S

OQE but 100% were retrieved by S+S+R OQE;

suggesting S+S+R OQE can achieve higher

recall than K and S+S OQE and the small

ontology was again very relevant.

4.3. Comparing Query Mode P Success

Table 1 shows T401 query mode successes,

i.e. how often K and/or OQE (All and S+S OQE)

modes achieved the top precision P, at 10, 20 and

30% recalls R. Tied results are also shown.

Table 1

Mode 10% R 20% R 30% R Ave. % top

K 2 1 1 13%

OQE 6 8 9 77%

Tied result 2 1 0 10%

OQE mode was on average most P effective

77% of the time and K mode 13% of the time.

Both modes were joint top 10% of the time.

Table 2 shows the frequency of T416 K, S+S

and S+S+R OQE query mode successes.

Table 2

Mode 10% R 20% R 30% R Ave. % top

K 0 0 0 0%

S+S 1 1 1 10%

S+S+R 7 7 6 67%

Tied result 2 2 3 23%

 8

S+S+R mode had the best average top P

result (67%) over S+S (10%) and K (0%) but

there was a higher level of tied P scores (23%).

4.4. Revised Concept Relevance Weights

Relevance weightings were modified for

some later test queries: weights were removed by

applying a standard weight of 1.0 rate to all

concepts, and super class (0.7) and sub class

(0.3) weights were reversed to 0.3 and 0.7

respectively – see P&Rs in Fig. 15.

Fig. 15. P&R results of revised weightings.

The original section 2.2.3 weightings proved

to be least favourable. Reverse weightings were

slightly better but “removal” (applying 1.0 for

all) produced the best result.

5. Concluding Remarks

The experiments have shown that overall,

without resorting to semantic reasoning-based

structured query languages, OQE can improve P

in the 10-50% recall range. The Fig. 15 weight

change results suggest that the original T401 and

T416 OQE results could have been even more

favourable. However, as some K queries gave

better results, it seems that K and OQE modes

can provide complimentary search options.

Small ontology contexts with flat hierarchies

can restrict basic S+S OQE and require greater

expressivity, e.g. for relation classes; however,

small and specialised contexts may help to limit

superfluous OQE, which could be problematic

with a larger, generalised ontology.

Further work will refine the algorithms and

could include extending keyword query term

input by using text analysis to reduce a natural

language sentence (long tail) query into keyword

(short tail) sets for OQE.

Acknowledgements

Thanks to Peter Gray for his helpful

comments on improving this work.

References

[1] M. Ashburner, C. A. Ball, J. A. Blake, D.

Botstein, H. Butler, J. M. Cherry, A. P. Davis, K.

Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris,

D. P. Hill, L. Issel-Tarver, A. Kasarskis, S.

Lewis, J. C. Matese, J. E. Richardson, M.

Ringwald, G. M. Rubin and G. Sherlock, Gene

Ontology: tool for the unification of biology,

Nature Genetics 25 (1) (2000) 25-29.

[2] V. R. Benjamins, J. Davies, R. Baeza-Yates, P.

Mika, H. Zaragoza, M. Greaves, J. M. Gómez-

Pérez, J. Contreras, J. Domingue and D. Fensel,

Near-Term Prospects for Semantic Technologies,

IEEE Intelligent Systems 23 (1) (2008) 76-88.

[3] T. Berners-Lee, J. Hendler and O. Lassila, The

Semantic Web, Scientific American 284 (5)

(2001) 34-43.

[4] D. Berrueta, J. E. Labra and L. Polo, Searching

over Public Administration Legal Documents

Using Ontologies, in: Proceedings of Seventh

Joint Conference on Knowledge-Based Software

Engineering, 2006, pp. 167-175.

[5] J. Bhogal, A. MacFarlane and P. Smith, A review

of ontology based query expansion, Information

Processing and Management 43 (4) (2007) 866-

886.

[6] W. N. Borst, Construction of Engineering

Ontologies for Knowledge Sharing and Reuse,

Ph.D. Thesis, SIKS - Dutch Graduate School for

Information and Knowledge Systems, 1997.

[7] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y.

Peng, P. Reddivari, V. Doshi and J. Sachs,

Swoogle: A Search and Metadata Engine for the

Semantic Web, in: Proceedings of ACM

Thirteenth Conference on Information and

Knowledge Management (CIKM04), ACM,

2004, pp. 652-659.

[8] W.-D. Fang, L. Zhang, Y.-X. Wang and S.-B.

Dong, Toward a semantic search engine based on

ontologies, in: Proceedings of Fourth

International Conference on Machine Learning

and Cybernetics, 2005, pp. 1913-1918.

[9] R. Gligorov, W. ten Kate, Z. Aleksovski and F.

van Harmelen, Using Google distance to weight

approximate ontology matches, in: Proceedings

of 16th international conference on World Wide

Web, 2007, pp. 767-776.

[10] Google, Corporate Information, 2008,

http://www.google.com/corporate/tech.html

[Accessed 28 August 2008].

http://www.google.com/corporate/tech.html

 9

[11] T. R. Gruber, Toward principles for the design of

ontologies used for knowledge sharing,

International Journal of Human-Computer

Studies 43 (5-6) (1995) 907-928.

[12] T. R. Gruber, A Translation Approach to Portable

Ontology Specifications, Knowledge Acquisition

5 (2) (1993) 199-220.

[13] N. Guarino, Formal Ontology and Information

Systems, in: Proceedings of 1st International

Conference on Formal Ontologies in Information

Systems (FOIS'98), IOS Press, 1998, pp. 3-15.

[14] Hakia, Search Engine Beta, 2008,

http://www.hakia.com/ [Accessed 3 March 2008].

[15] H. H. Kim, ONTOWEB: Implementing an

ontology-based Web retrieval system, Journal of

the American Society for Information Science

and Technology 56 (11) (2005) 1167-1176.

[16] Y. Lei, V. Uren and E. Motta, SemSearch: A

Search Engine for the Semantic Web, in:

Proceedings of 15th International Conference -

Managing Knowledge in a World of Networks -

EKAW 2006, Springer Berlin / Heidelberg, 2006,

pp. 238-245.

[17] B. McBride, Jena: A Semantic Web Toolkit,

IEEE Internet Computing 6 (6) (2002) 55-59.

[18] R. Navigli and P. Velardi, An analysis of

ontology-based query expansion strategies, in:

Proceedings of International Workshop on

Adaptive Text Extraction and Mining at 14th

European Conference on Machine Learning and

7th European Conference on Principles and

Practice of Knowledge Discovery in Databases,

2003, pp. 42-49.

[19] N. F. Noy and C. D. Hafner, The State of the Art

in Ontology Design - A Survey and Comparative

Review, AI Magazine 18 (3) (1997) 53-74.

[20] E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H.

Stenzhorn and G. Tummarello, Sindice.com: A

Document-oriented Lookup Index for Open

Linked Data, 2008,

http://www.eyaloren.org/pubs/ijmso2008.pdf

[Accessed 7 October 2008].

[21] Powerset, Powerlabs, 2008,

http://www.powerset.com/ [Accessed 7 May

2008].

[22] A. L. Rector, Modularisation of domain

ontologies implemented in description logics and

related formalisms including OWL, in:

Proceedings of 2nd International Conference On

Knowledge Capture, ACM Press, New York, NY,

USA, 2003, pp. 121-128.

[23] C. Rocha, D. Schwabe and M. P. de Aragão, A

Hybrid Approach for Searching in the Semantic

Web, in: Proceedings of 13th international

conference on World Wide Web, 2004, pp. 374-

383.

[24] G. Salton, A. Wong and J. Yang, A vector space

model for automatic indexing, Communications

of the ACM 18 (11) (1975) 613-620.

[25] K. Spärck Jones, A statistical interpretation of

term specificity and its application in retrieval,

Journal of Documentation 60 (5) (2004) 493-502.

[26] K. Sparck Jones, S. Walker and S. E. Robertson,

A probabilistic model of information retrieval:

development and comparative experiments,

Information Processing and Management 36 (6)

(2000) 779-808.

[27] R. Stevens, C. A. Goble and S. Bechhofer,

Ontology-based knowledge representation for

bioinformatics, Briefings in Bioinformatics 1 (4)

(2000) 398-414.

[28] S. Tiun, R. Abdullah and T. E. Kong, Automatic

Topic Identification Using Ontology Hierarchy,

in: Proceedings of Second International

Conference on Computational Linguistics and

Intelligent Text Processing, 2001, pp. 444-453.

[29] TREC, Text REtrieval Conference, 2008,

http://trec.nist.gov/ [Accessed 4 April 2008].

[30] C. J. van Rijsbergen, Information Retrieval,

Butterworths, 1979,

http://www.dcs.gla.ac.uk/Keith/Preface.html

[Accessed 20 April 2008].

[31] E. Voorhees, Query expansion using lexical-

semantic relations, in: Proceedings of 17th annual

international ACM SIGIR conference on

Research and development in information

retrieval, 1994, pp. 61-69.

[32] W3C, OWL Web Ontology Language Guide,

World Wide Web Consortium, 2004,

http://www.w3.org/TR/owl-guide/ [Accessed 24

October 2007].

[33] W3C, RDF Primer, World Wide Web

Consortium, 2004, http://www.w3.org/TR/rdf-

primer/ [Accessed 15 November 2007].

[34] W3C, Semantic Web Case Studies and Use

Cases, World Wide Web Consortium, 2008,

http://www.w3.org/2001/sw/sweo/public/UseCas

es/ [Accessed 24 March 2008].

http://www.hakia.com/
http://www.eyaloren.org/pubs/ijmso2008.pdf
http://www.powerset.com/
http://trec.nist.gov/
http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/2001/sw/sweo/public/UseCases/
http://www.w3.org/2001/sw/sweo/public/UseCases/

 10

Appendix

Pseudo code based on Jena API library, for class

hierarchy and relation class OQE algorithms.

OQE Algorithm – Class Hierarchy

Super class OQE adds direct super class line

classes, i.e. it excludes sub class branches.

for ontology iterator list named_classes C {
 if C sub_C OR C super_C required {//SUB/SUPER CLASS
 for each keyword {
 if C Label OR LocalName equals keyword {
 if super_C is required {
 do_super_C_proc; }
 if sub_C is required {
 do_sub_C_proc;
 do_sub_C_individuals_proc; }
 do_C_proc; }
 if do_C_proc {
 Do_OQE_PROC; // Do Named Class Proc
 for C equivalent_C iterator list equivalent_classes {
 if equivalent_C is NOT intersection_C {
 Do_OQE_PROC; }
 else if equivalent_C is intersection_C {
 for equivalent_C intersection_C iterator list

intersection_C members {
 Do_OQE_PROC; } }
 }
 }
 if do_super_C_proc AND named_C has super_C {//Get Super Cs
 for C super_C iterator list super_classes {
 if super_C is not anonymous_C {
 if super_C is not a Restriction_C AND
 not a Thing_C AND not a Resource_C {
 set Top_Class equal to next super_C;
 do_super_C_individuals_proc;
 Do_OQE_PROC; } }
 else if super_C is anonymous_C {
 if super_C is union_C {
 for super_C union_C iterator list union_C members {
 Do_OQE_PROC; } }
 else if super_C is intersection_C {
 for super_C intersection_C iterator list intersection_C

members {
 Do_OQE_PROC; } }
 }
 }
 if do_super_C_individuals_proc {
 for ontology iterator list named_classes CI {
 if CI Label or LocalName equals Top_Class {
 for CI individuals iterator list individuals {
 Do_OQE_PROC; } } } }
 }
 if do_sub_C_proc AND C has a sub_C {
 for C sub_C iterator list sub_classes {
 Do_OQE_PROC; } } // Get SUB CLASSES
 if do_sub_C_individuals_proc AND
 (do_super_C_individuals_proc NOT executed) {
 for C individuals iterator list individuals {
 Do_OQE_PROC; } } // Get INDIVIDUALS
 } }
 else if sub_C NOT required AND super_C NOT required {
 Do_OQE_PROC; } // Get ALL Ontology CLASSES
}

if sub_C NOT required AND super_C NOT required {
 for ontology iterator list individuals {
 Do_OQE_PROC; } } // Get ALL Ontology INDIVIDUALS

Do_OQE_PROC { // POPULATE OQE ARRAY
 add class/individual Label to OQE array;
 add class/individual LocalName to OQE array; }

OQE Algorithm – Relation Classes

Relation classes are only generated for classes

identified by the class hierarchy algorithm.

for ontology iterator list named_classes C { //Get ont classes
 add C LocalName and Label to ONT array;
 for each existing OQE array term {
 if C equals OQE array term { //matched term
 for C super_C iterator list super_classes {
 if super_C is anonymous {
 //Get asserted condition
 for super_C_property_value iterator list property_values {
 if property_V LocalName does NOT equal null OR
 "Resource" OR "Restriction" OR "Class" {
 // possible relation classes?
 add property_V LocalName to property_value array;
} } } } } } }

for each property_value array item {
 for each existing ONT array term {
 if property_value array item equals ONT array class/term {
 // handle duplicates
 if vector does not contain ONT array class/term {
 add ONT array class/term to vector;
 // New OQE relation class
 add ONT array class/term LocalName and Label to OQE array;
 add Semantic_distance_weight to OQE array;
} } } }

