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Abstract  

 

Ontologies describe domains and integrate 

information semantically.  This paper examines 

semantic search, using ontology modules 

(contexts) and an independent corpus of Web 

documents, to see how ontology-based query 

expansion (OQE) might improve information 

retrieval precision and recall (P&R) compared to 

traditional keyword-only query; by giving added 

weight to documents that contain terms relevant 

to a query context ontology and also by returning 

relevant Web documents containing none of the 

original search keywords. 

To assess search effectiveness, a semantic 

search tool (SemSeT) has been developed to 

conduct OQE experiments; by matching OWL 

file concepts with document text, without 

resorting to structured semantic query languages 

or reasoning to automatically refine queries.  A 

vector space model has been used to calculate 

document relevance scores and the results show 

that, compared to basic keyword query, OQE can 

markedly improve P&R. 
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1. Introduction 

Traditional Web search and information 

retrieval (IR) rely on matching keywords/phrases 

with indexed documents to generate a ranked list 

of potentially relevant documents, optimised in 

terms of search effectiveness - typically precision 

and recall (P&R) [30].  However, traditional IR 

is unlikely to return documents having 

semantically related terms, if they contain none 

of the query terms.  Therefore, rather than relying 

solely on such IR approaches, could Semantic 

Web [3] ontologies help search tools retrieve 

relevant documents more effectively by giving 

greater weight to documents having wider 

contextual relevance to queries?  Whilst there are 

ontology based search examples, a review of 

Semantic Web near-term prospects [2] and 

examination of use cases [34], added to existing 

commercial search engine approaches, does not 

suggest imminent or significant semantic search 

breakthrough; and yet ontology expressivity 

seems to offer much for query expansion. 

The role of ontology [6, 11-13] in the 

Semantic Web is to formally describe a domain 

of interest, facilitate reusability [19], and 

semantically link and integrate information by 

overcoming structural and semantic 

heterogeneity.  A Semantic Web lift-off requires 

a critical mass of RDF/OWL [32, 33]. 

Ontologies have featured in various academic 

search initiatives: 

i. crawler-based locators of RDF and 

ontology resources, e.g. Swoogle [7] and 

Sindice [20]; search support in specialist 

knowledge domains, e.g. bioinformatics 

and the Gene Ontology [1, 27]; 

ii. international organisation support, e.g. 

World Bank and Organisation for 

Economic Co-operation and 

Development (OECD) [15] and in legal 

document search [4], where ontology 

query uses technical terms to find related 

information, terms and documents; 

iii. other research projects involving 

ontology-based query expansion [5] to 

exploit ontological relations [8, 16] and 

semantic network-based sense 

definitions [18], where ordinary keyword 

terms drive ontology traversal, using 

reasoning-based semantic query 

languages for query expansion concepts.  

Related lexical work has included [31].   

Commercial semantic search has included 

natural language processing search companies 

Hakia [14] and Powerset [21]. 

This research has similarities with research in 

(iii), except that it will measure the benefits of 

ontology-based query expansion (OQE) without 

resorting to semantic reasoning-based structured 

query languages.  A semantic search tool 

(SemSeT) has been developed to show that OQE 

can enhance P&R compared to purely keyword-

driven search.  The research will show how small 

ontology modules (contexts) can support users 
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and OQE and can return relevant Web 

documents containing none of the user’s original 

search terms, e.g. if query terms Europe and 

transport company were matched only in an 

ontology, SemSeT could search for semantically 

related concepts via the class hierarchy from 

TransportCompany to find North_West_Trains 

and from Europe via classes and relations to find 

Manchester and England - as in Fig. 1. 

 

Fig. 1. SemSeT OQE finds a related document. 

1.1. Research Objectives and Tasks 

The primary objective was to develop 

SemSeT, using a classic document relevance 

algorithm and generating P&R measures, to 

compare OQE search effectiveness against 

keyword-only search.  A query tool for both 

keyword and OQE was necessary because 

ontologies would be incorporated within a query 

process and meaningful document relevance 

comparisons with a search engine would be 

difficult given the effect of page indexing and 

relevance algorithms, e.g., the PageRank link 

analysis [10].  A further objective was to develop 

small self-standing ontology modules for use in 

both OQE and the user’s selection of a query 

relevant ontology context and terms.  The tool 

also required ontology traversal algorithms and 

concept weightings to reflect semantic distance 

between base query terms and OQE terms. 

1.2. IR and Document Relevance Ranking 

IR techniques present results ranked by order 

of relevance using various algorithms, e.g., the 

Vector Space Model (VSM) [24], an algebraic 

model for representing a document’s collection 

of terms (vector) as a scalar value to reflect 

similarity to a query vector, and Probabilistic 

Models [26], where similarities are calculated by 

probabilistic inference that term distribution will 

be different in relevant and non-relevant 

documents.  For this initial research, comparing 

the use of keywords against OQE, the VSM 

relevance measure was selected. 

The VSM has been extended by a classic tf-

idf measure [25] for term-weighting, where a 

term’s importance is increased by its frequency 

in the document but is reduced by the frequency 

of the term in the document corpus.  To rank a 

document’s relevance, the tf-idf measure 

calculates the sum of a document’s term weights: 

where tf represents the frequency F of any term t 

in document d (i.e., Ftd) and idf is the inverse 

document frequency calculated by the log of the 

number of documents D in a corpus, divided by 

the number of documents n containing term t.  A 

term weight vector Wtd, e.g. for term ti is then: 
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To minimise exaggerated weightings when 

documents contain excessively repeated terms, 

the frequency Ftd for each term can be 

normalised by dividing it by the highest term 

frequency maxFtd found in the document: 
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The document weight vector (Wd) is then the 

sum of all matched term weights: 
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The tf-idf result is a weighted statistical 

measure of a term’s importance to a document 

and can be used in P&R measures to determine 

search effectiveness. 

1.3. Search Effectiveness 

The IR community has traditionally 

evaluated search effectiveness using the set-

based P&R measures [30]: 
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P represents the number of relevant documents in 

a returned set and R is the number of relevant 

documents returned from a relevant set. 
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1.4. Modularisation of Ontology Concepts 

Small, self-standing ontologies can be 

developed by specifying concepts in an equally 

modular way, e.g. by adopting Rector’s best 

practice approach [22].  Rector advocates that 

self-standing primitives, roles and relations are 

combined in asserted conditions to form more 

complex defined classes, to avoid the often 

hidden, inexplicit meaning in a concept’s name. 

Given the use of search keywords, primitive 

(stand-alone/atomic) classes would seem 

consistent with the notion of such query terms 

and with OQE and document text matching. 

1.5. Organisation of the paper 

The paper is organised as follows: section 2 

discusses the SemSeT process and methods, 

search topic ontology contexts, and queries for 

P&R comparisons; section 3 provides pseudo 

code for algorithms considered in section 2, i.e. 

ontology traversal for OQE; section 4 presents 

OQE results and discusses their significance; 

section 5 presents conclusions. 

2. Experiment Design and Development 

This section considers the design and 

development of SemSeT for IR experiments 

made on the independent TREC WT2g [29] ¼ 

million Web document corpus; which has known 

relevance outcomes.  SemSeT uses various 

ontology traversal algorithms to identify query 

term matching/related OQE terms and calculates 

P&R measures from document relevance scores 

generated by a modified tf-idf algorithm.  The 

OWL ontology representation language [32] was 

used to specify ontology contexts. 

2.1. The SemSeT Interface 

SemSeT is a prototype keyword and 

ontology-based search tool developed with the 

Jena Ontology API [17]. It offers a controlled 

environment for testing OWL query algorithms 

and ranking documents for P&R comparisons. 

The interface (Fig. 2.) has three components: 

 query setup in panel [i]; 

 query mode, query term selection and 

VSM tf-idf scoring feedback in [ii]; 

 ranked document results output in [iii]. 

 

Fig. 2. SemSeT’s interface. 

Query setup [i] requires a search mode, i.e. 

keyword or ontology context, and up to 4 query 

terms.  Input boxes use an adaptive text process, 

e.g. entering “t” reduces an ontology context list 

to tourism and travel and “tr” selects travel.  The 

system then displays all travel classes in [ii] and 

adaptive text is used to find OQE query terms.  If 

a matching ontology term is not found, the user’s 

input is accepted.  Given a base term set, e.g. 

Hovercraft, Sea Travel, Ship and Transport, the 

base terms plus sub, super or equivalent class 

OQE set is generated in [ii], as shown in Fig. 3. 

 

Fig. 3. Base query terms OQE set. 

Various OQE options can be chosen, e.g. sub 

and super class or sub and super and relation 

class OQE.  Document hits and rankings are 

output in [ii] and [iii], as shown in Fig. 2 above. 

2.2. Search Process and Methods 

The SemSeT process, see Fig. 4, involves 

keyword /context selection (A), keyword entry 

(B), ontology traversal, term weighting and 

query term set generation (C), document text 



 4 

analysis using pattern matching and a regular 

expression (D), term weight allocation, VSM 

tfidf document relevance algorithm for P&R (E).  

The process only differs in query term set 

generation stage (C), based on the search mode 

required. 

 

Fig. 4. Schematic of SemSeT process. 

2.2.1. Term Pattern Matching and Validation 

Query testing was conducted on a small 

TREC document set so that text pattern matches 

could be validated.  The regular expression was 

refined until reliable query term matches and 

term counts were returned, e.g. ensuring ship, 

ships, ship’s or –ship, are counted as one term. 

2.2.2. Ontology Traversal for OQE 

The OQE process creates a query term set for 

each matched query term, by traversing the 

ontology and adding sub, super, equivalent and 

relation classes to the set, subject to the OQE 

option required, i.e. the query term plus related 

sub and super classes (S+S OQE); or S+S OQE 

plus relation classes (S+S+R OQE), as in 2.2.3; 

or all ontology classes (All OQE). 

2.2.3. Class and Relationship Weighting 

A weight can be applied to a query expansion 

concept based on its semantic distance from a 

query term [5, 8, 9, 23, 28]. 

As the weighting issue was unclear during 

early experimentation, it was decided to initially 

test SemSeT’s ranking algorithm using weights 

similar to [8].  Fig. 5 shows how weight Ow 

might reflect an ontology concept’s hierarchy 

position for OQE, e.g. the concept Ship is a super 

class of keyword matching class CargoShip and 

could rank lower (0.7) than the direct match 

CargoShip (1.0) but higher than CargoShip’s sub 

class Tanker (0.3).  The rationale was that a 

super class could be weighted above a sub class 

as a CargoShip is always a Ship but not 

necessarily a Tanker. 

 

Fig. 5. Semantic distance weights. 

Other weightings can apply, e.g. relation 

class CargoTerminal has no inheritance  

relationship with CargoShip but does have an 

asserted condition relation CargoShip unloadsAt 

CargoTerminal; it was weighted at 0.5 and 

individual Tanker_TorreyCanyon weighted  0.1. 

The document weight W
+

d is then modified 

by multiplying Ow with term weight vector Ftd : 

Wtd = ((Ftd * Ow) /maxFtd) * ln(D / nt) 

Different weightings were tested after the 

main query experimentation and their P&R 

impact is discussed in the results section. 

2.3. Ontology Contexts Developed for OQE 

The ontology context and OQE experiments 

were based on the narrative given for selected 

TREC query topics: TREC 401 “Foreign 

minorities, Germany” (T401) and TREC 416 

“Three Gorges Project” (T416); otherwise, 

ontologies were specified independently, i.e. 

without examining the TREC corpus. 

2.3.1. T401 “Foreign minorities, Germany” 

The query description for T401 was “What 

language and cultural differences impede the 

integration of foreign minorities in Germany?”  

The Border Agency site and glossary of terms, 

http://www.bia.homeoffice.gov.uk/, were used to 

identify immigration concepts and an ontology 

extract is shown in Fig. 6; it has a fairly shallow 

class hierarchy supporting 41 query terms, which 

limits S+S OQE potential. 
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Fig. 6. T401 Immigration ontology. 

2.3.2. T416 “Three Gorges Project” 

The query description for T416 was “What is 

the status of The Three Gorges Project?”  

Primary information sources for a hydro-electric 

ontology, see extract in Fig. 7, were the British 

Dam Society http://www.britishdams.org/ and 

Wikipedia’s Three Gorges Dam content 

http://en.wikipedia.org/wiki/Three_Gorges_Dam. 

 

Fig. 7. T416 Hydro-electric ontology. 

As the ontology supports 58 query terms in 

an equally shallow hierarchy, relation classes 

were specified using asserted conditions, see Fig. 

8, for S+S+R OQE query mode (2.2.2, 2.2.3). 

 

Fig. 8. Hydro-electric class relations. 

2.3.3. Query Matrix and P&R Comparisons 

Both T401 and T416 keyword (K) to OQE 

comparisons use a matrix of 10 query sets, 

providing a spread of ontology classes to satisfy 

the TREC topic query guidelines.  The data from 

50 queries allowed P&R graph comparisons to be 

made by plotting cumulative document precision 

at 10% recall intervals. 

T401’s matrix used every ontology term (41), 

as only limited S+S OQE was possible. Query 

sets 1-6 compared K against All OQE and sets 7-

10 compared K against S+S OQE. 

To examine T416’s S+S OQE limitations, 

approximately 40 ontology terms were used in 

two OQE approaches; by comparing K against 

S+S OQE and then against S+S+R OQE. 

3. Ontology Traversal Algorithms 

Simplified algorithms are shown for class 

hierarchy and relation class OQE. The appendix 

has more complete Jena API-based versions.   

3.1. OQE Algorithm – Class Hierarchy 

Super class OQE adds direct super class line 

classes, i.e. it excludes sub class branches. 

 
for each ontology class c { 
  if c subclass csub or c superclass c

sup
 OQE required { 

    for each keyword { 
       if c equals keyword { 
         if c

sup
 required {do c

sup
Proc. } 

         if csub required {do csubProc and do csubindividualProc. } 
         do cProc. } 
       if cProc {  
         add c to OQE array. 
         for c  list equivalent classes c

eq
 { 

           add c
eq

 to OQE array. } } 
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       if do c
sup

Proc AND c has c
sup 

{ 
          for c list c

sup
 { 

             set Top class equal to next c
sup

. 
             do c

sup
individualProc. 

             add c
sup

 to OQE array. }  
          if do c

sup
individualProc { 

            for Top class list individuals { 
              add individuals to OQE array. } } 
       } 
       if do csubProc AND c has csub {  
          for c list csub { add csub to OQE array. } } 
       if do csubindividualProc AND (c

sup
individualProc NOT executed) {  

          for c list individuals { add individual to OQE array. } } 
  } } 
  else if (csub AND c

sup
 OQE) NOT required {  

    add c to OQE array. } // Get All classes 
} 
 
if (csub AND c

sup
 OQE) NOT required { 

  for each ontology class list individuals { 
    add individual to OQE array. } } // Get All individuals 

3.2. OQE Algorithm – Relation Classes 

Relation classes are only generated for 

classes found by the class hierarchy algorithm. 
 

for each ontology class c { 
  for each OQE array term where c equals OQE array term {  
     for each c anonymous c

sup
 list object property values p

v
 { 

        if p
v
 NOT (null OR Resource OR Restriction OR Class) { 

           add p
v
 to PV array. } } } } // relation class? 

for each PV array p
v
 { 

  for every c  where p
v
 equals c { 

     if vector does not contain c { // relation class 
       add c to vector and add c and weight to OQE array. } } } 

4. Results and Discussion 

In T401, 13,065 documents were queried to 

find 37 relevant documents and in T416, 160,838 

docs were queried to find 10 relevant documents. 

The grouped P&R results were considered by 

comparing P&R averages in two ways to account 

for queries containing skewed data: 

i. precision calculated on the average 

number of relevant documents returned 

at each 10% recall point; 

ii. precision based on pooling individual 

P&R curves, using a micro-evaluation 

averaging (MEA) approach [30], i.e. 

averaging precision percentages.  

MEA-based graphs are shown where 

P&R differs significantly from (i). 

4.1. T401 “Foreign minorities, Germany” 

The result of T401’s query group Q1-6 

comparisons (K vs. All OQE) is shown in Fig. 9.  

The All OQE mode resulted in significantly 

higher average precision performance over K 

across the 10-90% recall points.  As the MEA-

based P&R profile was similar it is not shown. 

 

Fig. 9. T401 P&R: K v. All OQE. 

The query group Q7-10 (K vs. S+S OQE) 

results show little difference between the K and 

S+S OQE profiles, see Fig. 10, with K precision 

marginally better than S+S OQE at 10% and 

20% recall but lower at 30-80% recall. 

 

Fig. 10. T401 P&R: K v. S+S OQE. 

However, the group results were partly 

distorted because, whilst query sets Q7, 8 and 9 

showed better S+S OQE mode precision than K, 

the results averaging was affected solely by 

significantly higher document numbers returned 

in query set Q10.  Fig. 11 shows the MEA-based 

P&R, with Q10 units issue minimised. 

 

Fig. 11. T401 MEA P&R: K v. S+S OQE. 
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The combined P&R graph for all 10 T401 

query sets Q1-10, i.e. comparing K to OQE 

modes (All and S+S OQE) is shown in Fig. 12. 

 

Fig. 12. T401 P&R: K v. All/S+S OQE. 

The graph shows OQE produced a markedly 

better P&R curve than K between 10-90% recall.  

The MEA-based graph showed a raised precision 

(+10%) at 10-60% recall points for both K and 

OQE but is not shown, as the precision curve 

differentials were maintained at all recall points. 

Recall was 100% for both K and OQE.  On 

average All and S+S OQE generated 28 query 

terms, with 25 (91%) matched in document 

search, suggesting the ontology was very 

relevant. The lowest OQEs were for S+S OQE, 

with an average 8 terms, all matched. 

4.2. T416 Three Gorges Project 

The T416 P&R graphs compare combined 

results for all query groups Q1-10, for K vs. S+S 

OQE and K vs. S+S+R OQE modes - see Fig. 13.   

 

Fig. 13. T416 P&R: K v. S+S/S+S+R OQE. 

The MEA-based graph shows similar relative 

P&Rs but precision is higher (≈10%) for K and 

S+S OQE and even better (≈20%) for S+S+R 

OQE) between 10-60% recall - see Fig. 14. 

 

Fig. 14. T416 MEA P&R: K v. S+S/ S+S+R. 

In both graphs, S+S OQE showed better 

precision than K mode at 10-50% recall but 

S+S+R OQE eclipsed both.  S+S OQE generated 

on average 8 query terms, with 7 (93%) matched, 

while S+S+R OQE generated 21 terms, with 19 

matched (95%).  On average 95% of the 10 

relevant documents were found using K and S+S 

OQE but 100% were retrieved by S+S+R OQE; 

suggesting S+S+R OQE can achieve higher 

recall than K and S+S OQE and the small 

ontology was again very relevant. 

4.3. Comparing Query Mode P Success 

Table 1 shows T401 query mode successes, 

i.e. how often K and/or OQE (All and S+S OQE) 

modes achieved the top precision P, at 10, 20 and 

30% recalls R.  Tied results are also shown. 

Table 1 

Mode 10% R 20% R 30% R Ave. % top 

K 2 1 1 13% 

OQE 6 8 9 77% 

 

Tied result 2 1 0 10% 

 

OQE mode was on average most P effective 

77% of the time and K mode 13% of the time.  

Both modes were joint top 10% of the time. 

Table 2 shows the frequency of T416 K, S+S 

and S+S+R OQE query mode successes. 

Table 2 

Mode 10% R 20% R 30% R Ave. % top 

K 0 0 0 0% 

S+S 1 1 1 10% 

S+S+R 7 7 6 67% 

 

Tied result 2 2 3 23% 
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S+S+R mode had the best average top P 

result (67%) over S+S (10%) and K (0%) but 

there was a higher level of tied P scores (23%). 

4.4. Revised Concept Relevance Weights 

Relevance weightings were modified for 

some later test queries: weights were removed by 

applying a standard weight of 1.0 rate to all 

concepts, and super class (0.7) and sub class 

(0.3) weights were reversed to 0.3 and 0.7 

respectively – see P&Rs in Fig. 15. 

 

Fig. 15. P&R results of revised weightings. 

The original section 2.2.3 weightings proved 

to be least favourable.  Reverse weightings were 

slightly better but “removal” (applying 1.0 for 

all) produced the best result. 

5. Concluding Remarks 

The experiments have shown that overall, 

without resorting to semantic reasoning-based 

structured query languages, OQE can improve P 

in the 10-50% recall range.  The Fig. 15 weight 

change results suggest that the original T401 and 

T416 OQE results could have been even more 

favourable.  However, as some K queries gave 

better results, it seems that K and OQE modes 

can provide complimentary search options. 

Small ontology contexts with flat hierarchies 

can restrict basic S+S OQE and require greater 

expressivity, e.g. for relation classes; however, 

small and specialised contexts may help to limit 

superfluous OQE, which could be problematic 

with a larger, generalised ontology. 

Further work will refine the algorithms and 

could include extending keyword query term 

input by using text analysis to reduce a natural 

language sentence (long tail) query into keyword 

(short tail) sets for OQE. 
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Appendix 

Pseudo code based on Jena API library, for class 

hierarchy and relation class OQE algorithms. 

 

OQE Algorithm – Class Hierarchy 

 

Super class OQE adds direct super class line 

classes, i.e. it excludes sub class branches. 

 
for ontology iterator list named_classes C { 
  if C sub_C OR C super_C required {//SUB/SUPER CLASS 
    for each keyword { 
      if C Label OR LocalName equals keyword { 
        if super_C is required { 
          do_super_C_proc; } 
        if sub_C is required { 
          do_sub_C_proc;  
          do_sub_C_individuals_proc; } 
        do_C_proc; } 
     if do_C_proc {  
       Do_OQE_PROC; // Do Named Class Proc 
       for C equivalent_C iterator list equivalent_classes { 
          if equivalent_C is NOT intersection_C { 
            Do_OQE_PROC; } 
          else if equivalent_C is intersection_C { 
             for equivalent_C intersection_C iterator list            

intersection_C members { 
                Do_OQE_PROC; } } 
       } 
     }  
     if do_super_C_proc AND named_C has super_C {//Get Super Cs 
       for C super_C iterator list super_classes { 
         if super_C is not anonymous_C { 
           if super_C is not a Restriction_C AND 
                  not a Thing_C AND not a Resource_C { 
              set Top_Class equal to next super_C; 
              do_super_C_individuals_proc; 
              Do_OQE_PROC; } } 
         else if super_C is anonymous_C { 
            if super_C is union_C { 
               for super_C union_C iterator list union_C members { 
               Do_OQE_PROC; } } 
            else if super_C is intersection_C { 
               for super_C intersection_C iterator list intersection_C 

members { 
                  Do_OQE_PROC; } } 
          } 
       } 
       if do_super_C_individuals_proc { 
         for ontology iterator list named_classes CI { 
            if CI Label or LocalName equals Top_Class { 
              for CI individuals iterator list individuals { 
              Do_OQE_PROC; } } } } 
     } 
     if do_sub_C_proc AND C has a sub_C {  
        for C sub_C iterator list sub_classes { 
          Do_OQE_PROC; } } // Get SUB CLASSES 
     if do_sub_C_individuals_proc AND 
                  (do_super_C_individuals_proc NOT executed) {  
        for C individuals iterator list individuals { 
           Do_OQE_PROC; } } // Get INDIVIDUALS 
  } } 
  else if sub_C NOT required AND super_C NOT required {  
     Do_OQE_PROC; } // Get ALL Ontology CLASSES 
}  
 
if sub_C NOT required AND super_C NOT required { 
  for ontology iterator list individuals { 
    Do_OQE_PROC; } } // Get ALL Ontology INDIVIDUALS 

 
Do_OQE_PROC { // POPULATE OQE ARRAY 
  add class/individual Label to OQE array; 
  add class/individual LocalName to OQE array; } 

 

 

 

OQE Algorithm – Relation Classes 
 

Relation classes are only generated for classes 

identified by the class hierarchy algorithm. 
 
for ontology iterator list named_classes C { //Get ont classes 
  add C LocalName and Label to ONT array; 
  for each existing OQE array term { 
    if C equals OQE array term { //matched term 
      for C super_C iterator list super_classes {  
        if super_C is anonymous { 
          //Get asserted condition  
          for super_C_property_value iterator list property_values { 
            if  property_V LocalName does NOT equal null OR 
                             "Resource" OR "Restriction" OR "Class" { 
              // possible relation classes? 
              add property_V LocalName to property_value array; 
} } } } } } } 
 
for each property_value array item {  
  for each existing ONT array term { 
    if property_value array item equals ONT array class/term { 
      // handle duplicates 
      if vector does not contain ONT array class/term { 
        add ONT array class/term to vector; 
        // New OQE relation class 
       add ONT array class/term LocalName and Label to OQE array;  
       add Semantic_distance_weight to OQE array; 
} } } } 


