
 1 March 2003

The Development of Object-

oriented Databases - their

Strengths and Weaknesses.

David George - Information Systems

Design, University of Central Lancashire,

Preston, UK.

Abstract

This paper considers the emergence of Object

Oriented database (OODB) systems over the last 10

years, together with their strengths and weaknesses.

Modern business and scientific computing requires

sophisticated data and media storage to handle complex

real-world problems. Data “objects”, in an object-

oriented approach, are considered an ideal technology

to handle multimedia data. OODBs can provide

dramatic performance benefits, over relational systems,

when managing rich data types. However, they require a

more complex syntax (compared to Relational DB query

languages) to manage an OO data model’s complexity of

methods, class and aggregate hierarchy; this has created

a significant cognitive issue for users to grasp.

Whilst Object-oriented databases have superior

capabilities in more effectively modelling the real world,

they are regarded as immature; hence the emergence of

hybrid Object-Relational (O/R) systems. Yet, OODBs are

likely to occupy a niche in the market and be a logical

choice for specialised multimedia, CAD/CAM, medical

applications and mapping applications, it is likely that

the more “conventional” O/RDBMS are likely to

predominate.

Keywords: Advanced Database Systems; Data

Model; Object-oriented; Entity-relationship;

1 Introduction

This review paper outlines the rationale for the

emergence of Object-oriented database (OODB)

systems. It will consider their strengths and

weaknesses and review the arguments for and

against; based on a paper presented by Won Kim,

founder of UniSQL (Kim 1991). Industry

developments during the last 10 years will be

considered.

Data structures and information storage and

extraction have become key issues in an

increasingly complex data management

environment that has demonstrated successive

changes in the period 1960 to 1990. Early file

systems were superseded by hierarchical and

network based systems, which in turn, were

displaced by relational database management

systems (RDBMS). Relational systems, based on

the relational model by E. F. Codd (of IBM) in

1970, allowed database developers to more

efficiently link and access related data. This was

further superseded through the development of the

entity-relationship model (Chen 1976), that

provided “a special diagrammatic technique … as a

tool for database design” and interestingly

“incorporated some of the important semantic

information about the real world”. This was itself

further improved by the extended-relational model,

which was designed to capture more meaning

(Codd 1979).

However, throughout these evolutionary stages,

common themes of escalating costs of developing,

managing and upgrading database programs have

emerged as key issues. Modern business

computing needs - related to information access,

retrieval and modelling techniques - have placed

significant demands in the last 15-20 years. For

example, transport organisations may now wish to

store detailed travel maps along with consignment

information and there are now more sophisticated

scientific and commercial requirements for such

issues as the storage of sound, graphics,

fingerprinting, knowledge-based systems, and

computer software-aided design, engineering and

modelling tools.

Whilst conventional systems have adequately

supported routine data processing tasks such as

invoicing, stock control and management support

applications, they have been unsuitable in coping

with increasingly complex real-world problems. It

is accepted that RDBMS can support the storage

and retrieval of binary large objects (BLOBS), e.g.

images, audio clips and video streams, but

relational systems do not have the capability of

supporting the interrogation of the properties of the

BLOB e.g. in an engineering application it may be

necessary to replace one component in a 3D model

by another but the user would have to first

interrogate the component’s properties to accurately

identify it.

The following conceptual view of data

management (see Fig. 1) depicts the key elements

required in developing database systems. Clearly,

the building block of the database system is the

core data model.

Fig. 1 – DB Implementation Conceptual Model.

 2 March 2003

2 Emergence of OODB systems

The complexity and format of “new” data or

object types demonstrated the need for data models

that could more closely represent the real world.

Further, a different approach was required to handle

the way in which data entities, attributes and their

relationships were stored and referenced i.e.

through their representation as data “objects” in an

object-oriented (OO) approach.

The OO data model has its roots in Rank

Xerox’s Palo Alto Research Centre in the 70’s

(Rob, Coronel 2002), when the growing cost of

developing complex programs focused efforts on

achieving code reusability (Du, Wu 2001). The

view was that an OO data model was a natural way

forward in addressing complex data types. This,

allied with rapidly expanding processing power,

large-scale storage and high-performance

compression (Cheng, Yang 2000), provided the

platform upon which sophisticated transactions

processing could be supported. According to Rob

and Coronel, the first example of such a model was

that developed by Hammer & McLeod in 1978 and

called the “Semantic Data Model”; semantic means

capturing “meaning” (Codd 1979).

Thus, it was OODBs offered an ideal

technology; being designed to handle the

multimedia data highlighted above and which is

now so frequently found on the Internet. It was

considered that OODB management (OODBM)

systems would soon become the primary database

technology – “the next revolution” (Bertino,

Martino 1993), superseding conventional RDBMS.

Indeed, we can now be interacting with OODBM

systems when we use pagers, access voicemail or

book a flight according to Doug Barry, Executive

Director of the ODMG (Barry, Duhl 2001). And

yet, in a paper published in the Journal of Object-

Oriented Programming, Won Kim said, “no

existing object-oriented database system has

delivered on the promises of object-oriented

technology”. Was this view justified and how has

the evolution of OODBM systems progressed since

then?

According to Won Kim, the so-called “richer”

data structures of sound, 3D etc. are, on analysis,

“complex nested entities … best served by using

semantic concepts”. Data manipulation tends to be

“compute” intensive, e.g. simulation programmes,

requiring significant memory allocation, high

performance specifications and extended

processing cycles; justifications behind why

OODBM systems were the “paradigm” (Du, Wu

2001) shift that sought to satisfy scientific needs

through exploitation of applications based on

object-oriented programming language principles.

They offered data models that not only represented

data, relationships and constraints but also allowed

“encapsulation” i.e. declaration of attributes/state

and behaviours/methods that relate to an object,

together with support to “hide” an object’s internal

attributes & methods (Du, Wu 2001 & Shoval,

Shiran1997) – only methods can access instance

variables, thus maintaining object integrity. In

addition, the OO model introduced the concept of

“inheritance” or “reuse” of state and behaviour i.e.

the ability of an object, within a class of objects, to

inherit the data structure and methods of the classes

above it i.e. the super class of any object.

Consequently, in Fig. 2, the paradigm of OODBM

systems emerges:

Fig. 2 - Emergence of OODBM systems.

Whilst the concepts of encapsulation and

inheritance addressed the challenge of reducing

design difficulties and provided a means of creating

large complex database systems, in the early 90’s

they faced serious challenges. There were few

application development tools available at the time,

performance was an issue and the capability of the

OODB model to handle complex structures was, in

itself, an Achilles heel of “complexity” for the

developer. Further, and often typical in new

technology innovation, was the lack of industry

standards on object semantics/data model (Leavitt

2000 & Shoval, Shiran1997). This restricted

industry and client diffusion of OODBM systems,

which interestingly reflects the characteristics of

the “innovation adoption” curve (Rogers 1995); the

industry has yet to see technology “take-off”.

3 Strengths of OODBMS versus RDBMS

Despite the above, what are considered to be the

key features and advantages of OODBM systems?

OODBM systems can provide dramatic

performance improvements when managing rich

data types, compared to relational systems (Rob,

Coronel 2002 & Barry, Duhl 2001), although this

requires platforms that allow efficient caching.

Kim said that one of the strengths of OODBM

systems was the ability to rely on the core object-

oriented concepts of OO programming. A

 3 March 2003

conventional relational database record or “tuple”

equates to an object in an OODB, having attributes

or state. However, it has been seen that objects also

have the advantage of not only “encapsulating”

state but also methods (Shoval, Shiran1997).

Objects that have the same states and methods

would form the basis of a class. Furthermore, those

objects sharing the same class, e.g. car, bus of the

class vehicle, through a class hierarchy (directed

acyclic graph), would demonstrate “inheritance” of

core states and methods e.g. in simple terms:

number plate, gearbox, update and delete.

Inheritance is one of the key features of OO design

and is claimed to reduce the amount of maintenance

and testing (Leavitt 2000 & Harrison 1999).

Equally, objects/classes can have multiple

inheritance i.e. they can have more than one

immediate parent, although this can lead to issues if

similar variables and methods exist in each parent.

Additionally, the class may modify or specialise an

inherited method by redefining the method at

subclass level e.g. method “bonus calculation” for

“employee” may be defined as salary(s)*0.07 but

for “manager” it could be salary s*0.10 and for

“sales” it could be (s+commission)*0.05. Thus by

calling the same method for different objects the

system would generate different responses; this

gives rise to “polymorphism” i.e. a method may be

invoked differently by objects of different classes

(Rob, Coronel 2002). It is the programming

efficiency, through “re-use”, that makes OODB

systems much more powerful.

The grouping of objects (specialised subclasses)

permits a semantic representation in the form of a

generalised class (superclass) and vice versa. An

examination of relational database structures

reveals no similar inheritance or generalisation

features. The hierarchy of classes and subclasses

provides both an inheritance path, facilitating

database design through re-use, and a means by

which developers can define and modify classes

without the need to explicitly program in changes

for associated classes; thus providing significant

programming flexibility.

In OODBM systems an object attribute may be

any class, be it a primitive data type e.g. integer,

and also an object in its own right i.e. it may be a

general class and have subclasses (aggregation).

Therefore OODB attributes can have a single or, a

set of values, whilst the “type” of an attribute is

restricted to a finite group of primitive data types in

relational database systems.

Fig 3 – Class hierarchy showing aggregation and semantic OO data model against ER Model.

 4 March 2003

From a recursive perspective, the class

hierarchy, as a complex nested object, is an

instance of an aggregation hierarchy: i.e. what

defines the superclass (or what it is) is the

aggregation of all the object classes contained

therein, each of which would have its own object

identifier (OID). Therefore the combination of

class and aggregation hierarchies allows developers

to represent any data type because aggregation

hierarchies can be cyclic. Fig. 3 demonstrates how

this is represented in a simple business invoice and

also illustrates OO semantic content compared to an

entity-relationship schema.

The OO data model represents an object as a

single block, containing the object attributes

(themselves objects) together with relationships to

other objects. In this case, “Invoice” groups all

related objects within the same object box and it

would be possible to add new data types e.g.

telephone number, address etc. The OO data model

clearly demonstrates semantic content, “providing a

more natural and realistic representation” (Rob,

Coronel 2002) of an invoice. This can be compared

to the E-R model, which represents it as three

entities and two relationships and does not readily

convey the concept of an invoice object.

Won Kim identifies that a further advantage of

OODB concepts is that OODB “states” and

“methods” may be invoked from outside an object

– i.e. such a request may be bound to a method

contained in a superclass – whereas RDBM systems

can only pass requests direct. OODB systems also

support a feature called “versioning” i.e. the ability

to track the history of changes in the state of an

object. This is a powerful tool when used in

CAD/CAE environments.

Finally, as in the hierarchical model, the

OODM’s inheritance serves to protect database

integrity (Du, Wu 2001). OODM object autonomy

ensures both structural and data independence i.e.

the ability to make changes to the database

structure without compromising the ability to

access data (Rob, Coronel 2002).

4 Weaknesses of OODBMS compared to

RDBMS

In the early1990s Won Kim considered that

there were a number of issues as a consequence of

the relative immaturity of OODB systems. These

centred on the data model, database language and

on the data model’s complexity issues for

developers.

At the time, proposals were being put forward

for agreement on the data model standard, or high-

level rules, through industry-wide efforts ostensibly

via the Object Management Group (now

ODataMG). The ODMG sought consensus on a

reference data model for OODB systems, with little

success (Leavitt 2000), and was supported by the

similar activities of the ANSI SPARC OOBB Task

Group. Proposals were also being put forward for

OO extensions for SQL, in particular via UniSQL

and Hewlett-Packard’s IRIS initiative. Won Kim

considered that ultimate progress on data model

standards would also be dependant on an OODB

vendor gaining significant market penetration or

hinge on a major player’s entry onto the OODB

market such as IBM.

Nevertheless, are there really significant

differences between OO and E-R? The OO data

model could be argued to be simply an extension of

the relational model because of the obvious

similarities between a “relation” and a “class” e.g.

classes are organised into a hierarchy because of

the generalisation/specialisation relationship.

A database user relies on the ability to

interrogate the system but in the 1990’s OODB

query language was relatively undeveloped and

considered immature (Rahayu, Chang 2001),

essentially because little attention had been given to

what is termed “external schema” or organisation

description; in relational systems this forms the

basis of query language. The level of syntax

complexity has further compounded this, when

compared to RDBM query language, i.e. the OO

data model’s complexity of methods, class and

aggregate hierarchy.

Development of new database systems in the

past, particularly relational DB systems, has been

characterised by programmers benefiting from

improved functionality to assist in programming

databases. In addition, the provision of query

functions that could be managed by users has

released developers from day to day data extraction

programming. However, whilst the OO data model

offers a richness of data modelling features this, in

itself, has created a significant cognitive issue for

users to grasp. This complexity demanded the

support of friendly application development and

design tools, for logical and physical database

creation, and data browsers and report writers –

tools that were unfortunately not readily available

at the outset.

Last but not least, Won Kim highlighted that

OODB systems in the early 90’s were not fully

comparable with relational systems in terms of

providing for adequate security, transaction

management, concurrency and recovery

mechanisms.

 5 March 2003

5 Developments in last 10 years

So what has changed since Won Kim’s paper?

The issue of OODM standards has still not been

resolved and of particular concern is the lack of a

standard data access method. Different vendors

support different access methods, resulting in

compatibility issues when data is accessed from

various sources. The lack of standards has

continued to ensure that there is a steep learning

curve for developer/users.

Whilst Object-oriented databases have shown

their superior capabilities in more effectively

modelling the real world, they are still regarded as

immature when compared to their conventional

counterparts (Rahayu, Chang 2001). This has

coincided with the emergence of a hybrid in the

form of Object-Relational systems and this has

probably been one of the reasons why relation-

based systems continue to dominate database

implementations, with some 90% of the market.

5.1 Object/Relational Database Management

Systems (O/RDBMS)

Object oriented systems can be created with

object databases or by using tools that give

“transparent” access to objects that are stored in

relational databases (Riccardi 2002).

O/RDBMS or Extended-Relational DBMS is

effectively, the relational database response to

OODBMS (Rob, Coronel 2002). An O/RDBMS

contains features of the OO model allied to a

simplified relational database structure, thus

providing a data model that is similar to the OODM

in that it seeks to address the issue of semantic

content. In addition, the object/relational approach

supports reusable methods to enable table access

and has demonstrated that it can be a superior

combination than a pure relational methodology;

providing improved real-world modelling

capability (Rahayu, Chang 2001).

However, not everyone considers O/RDBMS an

acceptable long-term solution. In a bulletin

presented by the International Data Corporation,

(McLure 1997), it was remarked that whilst

O/RDBMSs would support some object extensions

needed by complex applications, putting those

extensions on RDBMSs was akin “to adding stereo

radios and global navigation systems to horse-

drawn carriages”! Nevertheless, it was accepted

that because of the size of RDBMS vendors in the

market, the O/RDBMS market would soon exceed

the OODBMS market.

5.2 Products

O/RDBMS developments have been mainly

targeted at business applications compared to the

specialised engineering and scientific applications

that are supported by OODBMS. Interestingly, the

later versions of Oracle (Oracle 8 onwards)

represent object-relational hybrids because they

support both relational and object-oriented features.

According to the IDC vendors supplying

O/RDBMSs range from Oracle through to UniSQL,

Informix and IBM and clearly demonstrate the

involvement of the major industry vendors, whilst

OO vendors include Computer Associates (with its

Jasmine system used by Toyota) and Versant

(Versant ODBMS).

6 Evaluation

There can be little doubt that the semantic

content realised in the OODM provides a far

superior conceptual mapping with real world

objects and developers with a sound understanding

of OO programming principles should find that

objects are a natural way to model and can

accommodate a wide variety of types and

relationships.

The reuse of software through inheritance is

claimed to reduce the amount of software

maintenance necessary and produce more

understandable and reliable software. However,

results from experiments (Harrison 1999) indicated

that systems without inheritance were easier to

modify than systems containing three or more

levels of inheritance. It was also found that a

system with no inheritance was easier to

understand. And yet, in relational systems is there

not hierarchy implicit in attributes within entities?

After all “date” represents all possible dates and

“number” can be single, double, integer, long

integer etc.

OODB versioning clearly offers a powerful

modelling feature especially in CAD. The facility

to prototype designs, track the history of changes to

the state of an object and then reverse undesired

results, provides critical and core functionality for

such applications.

Complexity and the steep learning curve have

been levelled at OODBM systems. However it is

considered that this is something of a myth,

according to Doug Barry, (Barry, Duhl 2001),

because using an OODBMS primarily requires

knowledge of object programming languages.

Whilst it can be argued there are additional

database commands e.g. committing transactions

 6 March 2003

and managing databases, the syntax is very similar

to Java or C++.

On the question of processing speed, could it be

simply that OODBMS are simply focused more on

handling more complex data than RDBM systems?

Again, according to Barry & Duhl, OODBMS are

capable of running significantly faster than an

RDBMS – a view supported by Rob & Coronel.

Market Research firm IDC, in their report No.

22542, "Enterprise Database Management Systems

Market Forecast and Analysis, 2000-2004"

identified global 1999 sales revenue of $11.1

billion for relational and object-relational

databases, but only $211 million for OO databases.

It expected these totals to increase to $15.6 billion

and $265 million, respectively in 2001/2. Clearly a

lack of progress in securing market penetration

could hinder the adoption of OODB as a preferred

technology and the problem may be more critical

according to “Industry Trends” who quoted

Michael Stonebraker of Informix: "OODBMS

occupy a small niche market that has no broad

appeal. The technology is in semi-rigor mortis, and

ORDBMS will corner the market within five years”

(Leavitt 2000).

Finally, an experimental measure of “design

quality” (Shoval, Shiran 1997) - where quality was

measured in terms of correctness of conceptual

schemas, the time taken to complete the design task

and designers preferences – concluded that the ER

data model surpassed the OO model in all aspects.

7 Conclusions

Whilst OODBMS are likely continue to occupy

a niche in the market and remain a logical choice

for such areas as specialised multimedia,

CAD/CAM, medical applications and mapping

applications, there can be little doubt that the more

“conventional” O/RDBMS are likely to

predominate. Indeed, Date (Date & Darwen 1998)

believes “that a relational system that supported

domains properly would be able to deal with all of

those "problem" kinds of data that … OO systems

can handle and relational systems cannot”. He

further says, “a true "object/relational" system is

nothing more than a true relational system i.e. a

system that supports the Relational Model”.

OODBM systems represent just one strategy in

addressing the challenge of storing complex data

structures. They will have a part to play, along

with the more conventional RDBMS solution and

the hybrid O/RDBMS.

Finally, despite the creation of the object

database standard ODMG 2.0, ODMG needs more

vendors on board to make the standard an important

factor in the industry and yet ironically, the lack of

success in the development of ODMG standards

across the OODB segment is unlikely to encourage

more vendors into the market.

 7 March 2003

References

Kim 1991 Kim, W., “Object-oriented database systems: strengths and weaknesses”, Journal Object-Oriented

Programming, Vol. 1, 4, July/August 1991.

Rogers 1995 Rogers, EM., (1995), “Diffusion of Innovations, 4
th

 edition.”, The Free Press, New York, ISBN:

0029266718.

Rob, Coronel

2002

Rob, P., & Coronel, C., (2002), “Fifth Edition - Database Systems Design, Implementation &

Management – Fifth Edition”, Course Technology, ISBN: 0-619-06269-X.

Shoval, Shiran

1997

Shoval, P., & Shiran, S., “Entity-relationship and object-oriented data modelling - an experimental

comparison of design quality”, Data & Knowledge Engineering 21 (1997) 297 – 315.

Barry, Duhl 2001 Barry, DK., & Duhl, J., “Object Storage Fact Book: Object DBMSs

Release 5.0”, Barry & Associates, July 2001” URL: visited 10.3.2003,

http://www.odbmsfacts.com/object-database.html

Rahayu, Chang

2001

Rahayu, JW., Chang, E., Dillon, TS., & Taniar, D., “Performance evaluation of the object-relational

transformation methodology”, Data & Knowledge Engineering 38 (2001) 265 – 300.

Harrison 1999 Harrison, R., Counsell, S. & Nithi, R., “Experimental assessment of the effect of inheritance on the

maintainability of object-oriented systems”, The Journal of Systems and Software, 52 (2000) 173 –

179.

Codd 1979 Codd, EF., “Extending Database Relational Model to Capture More Meaning”, IBM Research

Laboratory, ACM Transactions on Database Systems, Vol. 4, No. 4, December 1979, URL: visited

10.3.2003 http://www.scism.sbu.ac.uk/~rmkemp/codd1979.pdf

Date & Darwen

1998

Date, CJ., & Darwen, H.,(1998) “Foundation for Object / Relational Databases: The Third

Manifesto”, Addison-Wesley, ISBN: 0-201-309785

McLure 1997 McClure, S., International Data Corporation, Bulletin #14821E, August 1997, URL: visited

10.3.2003 http://www.cai.com/products/jasmine/analyst/idc/14821Eat.htm

Riccardi 2001 Riccardi, G., (2001), “Principles of Database Systems with Internet and Java Applications”, Addison

Wesley, ISBN: 0-201-61247-X

Chen 1976 Chen, PP., “The Entity-Relationship Model: Toward a Unified View of Data”, ACM Transactions on

Database Systems, Vol. 1, No.1, pages 9-36, March 1976, URL: visited 20.3.2003

http://bit.csc.lsu.edu/~chen/pdf/erd.pdf

Bertino, Martino

1993

Bertino, E., & Martino, LD., (1993), “Object-oriented Database Systems: Concepts and

Architecture”, Addison Wesley, ISBN 0-201-624397.

Leavitt 2000 Leavitt, N., “Whatever Happened to Object-Oriented Databases?”, Industry Trends, August 2000,

URL: visited 20.3.2003, http://www.leavcom.com/pdf/DBpdf.pdf

Cheng, Yang

2000

Cheng, P., & Yang, W., (2000), “Composition and Retrieval of Visual Information for Video

Databases”, Journal of Visual Languages and Computing, 12, 627-656 available via

http://www.sciencedirect.com/science.

Du, Wu 2001 Du, T., & Wu, J., “Using object-oriented paradigm to develop an evolutional vehicle routing

system”, Computers in Industry, 44 (2001) 229 – 249.

Bibliography

1. Connolly, T., Begg, CE., (2001), “Database Systems: A Practical Approach to Design, Implementation and

Management”, Addison Wesley, ISBN 0 201 708574

2. Stair, RM., Reynolds, W., (2001), “Principles of Information Systems: A Managerial Approach, Fifth Edition”,

Course Technology, ISBN: 0-619-03357-6.

